Synaptic transmission between rat cerebellar granule and Purkinje cells in dissociated cell culture: effects of excitatory-amino acid transmitter antagonists.
نویسندگان
چکیده
Monosynaptic excitatory connections between cerebellar granule and Purkinje cells were studied in dissociated cell cultures, and identification of the transmitter and the postsynaptic receptor at this synapse was pharmacologically investigated. The presynaptic granule cell and the postsynaptic Purkinje cell were voltage- or current-clamped simultaneously, and the excitatory postsynaptic current induced by the granule cell was examined. The neurons and monosynaptic excitatory connections were identified as in our earlier study. Several pairs of granule and Purkinje cells were stained with Lucifer yellow and propidium iodide, respectively, and their morphology was examined after electrophysiological recording. The monosynaptic excitatory postsynaptic current was suppressed by 1 mM kynurenate, an antagonist for excitatory-amino acid receptors, but was little affected by 0.2 mM DL-2-amino-5-phosphonovalerate, a selective antagonist of N-methyl-D-aspartate receptors. Glutamate and aspartate induced inward current in the Purkinje cells. These currents were suppressed by kynurenate at 1 mM. DL-2-Amino-5-phosphonovalerate at 0.2 mM suppressed the inward current induced by 100 microM aspartate but did not affect the inward current induced by 10 microM glutamate. These results are consistent with the idea that glutamate, or a glutamate-like substance, but not aspartate is the transmitter released at the synapse between granule and Purkinje cells and that non-N-methyl-D-aspartate receptor channels are functioning in the postsynaptic membrane.
منابع مشابه
Stereological Estimation of Granule Cell Number and Purkinje Cell Volume in the Cerebellum of Noise-Exposed Young Rat
In spite of the existing reports on behavioural and biochemical changes related to the cerebellum due to noise stress, not much is known about the effect of noise stress on the neuronal changes in the cerebellum. The present study aims at investigating the effects from one week noise exposure on granule cell number and Purkinje cell volume within the neonate rat cerebellum.15-day-old male Wista...
متن کاملMethylmercury-induced increase of intracellular Ca2+ increases spontaneous synaptic current frequency in rat cerebellar slices.
The relationship between increased intracellular calcium concentration ([Ca(2+)](i)) and changes in spontaneous synaptic current frequency caused by the neurotoxicant methylmercury (MeHg) was examined in Purkinje cells of cerebellar slices using confocal microscopy and whole-cell recording. MeHg (10-100 microM) stimulated and then suppressed completely the frequency of spontaneous excitatory an...
متن کاملVoltage-gated and synaptic currents in rat Purkinje cells in dissociated cell cultures.
The electrical properties of rat Purkinje cells and synapses from granule cells were studied in dissociated cell cultures. To identify the cells we used an immunohistochemical method and recorded voltage-gated and synaptic currents with the patch-clamp technique (the whole-cell mode). Cultured Purkinje cells generated action potentials similar to those recorded from in vitro slices or in vivo p...
متن کاملLong-Term Potentiation of Glial Synaptic Currents in Cerebellar Culture
Glial cells in the brain express neurotransmitter receptors and can respond appropriately to application of exogenous neurotransmitters such as glutamate. However, activation of receptors by endogenous, synaptically released transmitter has been difficult to demonstrate directly. Using cell-pair recording in cerebellar cultures from embryonic mouse, it is shown that activation of a cerebellar g...
متن کاملImpaired cerebellar synapse maturation in waggler, a mutant mouse with a disrupted neuronal calcium channel gamma subunit.
The waggler, a neurological mutant mouse with a disrupted putative neuronal Ca(2+) channel gamma subunit, exhibits a cerebellar granule cell-specific brain-derived neurotrophic factor deficit, severe ataxia, and impaired eyeblink conditioning. Here, we show that multiple synapses of waggler cerebellar granule cells are arrested at an immature stage during development. Synaptic transmission is r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 85 3 شماره
صفحات -
تاریخ انتشار 1988